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Abstract

DiBello. Stout. and Roussos (1993) have developed a new item response model, called the
Unified Model. which brings together the discrete. deterministic aspects of cognition favored by
cognitive scientists, and the continuous, stochastic aspects of test response behavior that underlie
item response theory. The Unified Model blends psychometric and cognitive science viewpoints
and promises to allow the practitioner to recover cognitive information from simple. well-designed
tests.

In this paper, we propose an estimation procedure for the structural model parameters of
the Unified Model that uses the marginal maximum likelihood estimation approach by Bock and
Aitkin (1981) and utilizes the EM algorithm by Dempster, Laird. and Rubin (1977). In the
maximization (M) Step of the EAl algorithm. because of the difficulties in computing the second
derivative (Hessian) matrix and the possibility of multiple local maxima. we propose using an
alternative maximization procedurc. called Evolution Programming (Michalewicz 199-1). which
has good properties in finding a global extremum. A simulation study is then given to show the

effectiveness of our estimation procedure.

Key words: [nified Model. cognitive. item response theorv, marginal maximum likelihood

estimation. M algorithm. FEvolution Programming.




1 Introduction

DiBello, Stout, and Roussos (1993) have proposed a ncw psychometric approach to cognitive
diagnostic assessment. They develop a new item response model, called the Unified Model, which
brings together the discrete, deterministic aspects of cognition favored by cognitive scientists and
the continuous. stochastic aspects of test response behavior that underlie item response theory.
The Unified Model blends psychometric and cognitive science viewpoints and promises to allow
the practitioner to recover cognitive information from simple, well-designed tests.

The ultimate goal of developing the Unified Model is to enable practitioners to cognitively
classify the test takers and estimate their cognitive abilitics, thereby extracting useful information
about the test takers underlying cognitive processes on the test and their cognitive strengthes
and weaknesses. To achieve this goal, it is essential to be ible to estimate the model parameters
hefore we can go on to classify examinees and estimate their abilities. Unfortunately, due to its
structural complexity, until now there has been no estimation package available {or the Unified
Model. There are difficulties associated with the estimation problem, the main and foremost
problem being the identifiability and estimability issues involving the model parameters. In this
paper, we first give a brief overview of the Unified Model from the cognitive diagnosis viewpoint.
After the overview, we will discuss briefly the relationship between the deterministically predicted
ideal response patterns and the attribute states, as well as the identifiability and estimability
issues involving the item parameters and the latent ability distribution parameters.

The third section of this paper concerns the estimation of the structural paranieters of the
Unified Model. In this section we propose an estimation procedure using the marginal maxi-
mum likelihood estimation approach by Bock and Aitkin (1981). Since we cannot maximize the
marginal likelihood directly, we utilize the EM algorithm by Dempster, Laird. and Rubin (1977).
In the maximization (M) step of the EM algorithm, because of the difficulties in computing the
second derivative (Hessian) matrix and the possibility of multiple local maxima. we propose us-
ing Fvolution Programming (Michalewicz. 1994). which has good properties in finding a global
extremum.

In the fourth section of this paper. a simulation study is present showing the eflectiveness of

ouir proposed estimation procedure. We end the paper with a sammary section.
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2 The Unified Cognitive/IRT Model

2.1 Review of the Unified Model

The traditional role of tests in Education and Psychology is to rank the examinees and/or
judge their proficiencies within a broad area of knowledge. For example, the GRE tests examinee
proficiencies on verbal, quantitative, and analytical reasoning skills. In cognitive diagnosis. when
giving a test, the test developers and administrators are interested not only in judging exami-
nee proficiencies in a specific area of knowledge. but also in getting information on examinees’
underlying cognitive processes used on the test. This happens in the usual classroom setting:
when giving a test, a teacher not only wants to know which grade Johnny gets, but perhaps
more importantly, she wants to know whether Johnny has really mastered the Algebraic Rules
of Exponents. In other words, she wants to assess the examinee mastery on a variely of cognitive
attributes. An attribute represents a cognitive quality required for solution of a test item: it
can be anything based on the procedures. skills, processes. strategics, or the knowledge that an
examinee needs to possess to solve the item.

There are two distinct approaches in cognitive diagnosis: the continnous multidimensional
latent trait approach favored by nsychometricians and the discrete approach favored by cognitive
scientists. In the usnal latent trait approach. a few broadly described continuous latent traits
are postulated te account for systematic examinee response behavior on a test. As Snow and
Lohman (1989) noted, this approach has a weak cognitive foundation. Although it sometimes
sounds like the multidimensional underlying latent traits are cognitive in nature, it is generally
agreed that this approach has only been successful with broad, commposite abilities. In particular.
for example. it is of little help in trying to determine specific cognitive characteristics of examinees
for the purpose of instruction.

For the discrete approach. an example is latent class analysis (sec for example, Lazersleld and
Henry, 1963). A latent class analysis involves the postulation of a number of latent classes. In a
fatent class analysis. examinee ability is not represented as a continuous variable on dimensions
defined by the cognitive components. Instead. it is modeled by a vector of 1s and Os indicating
for cach cognitive component whether an examinee does or does not pussess the skills needed for

successful performance on the component. Latent class analyses either involve a large nmmber




of classes so that it is infeasible for estimation, or there are only a few latent classes that the
results are similar to multidimensional latent trait analyses in their coarseness of latent structure
assumed (Bock and Aitkin, 1981; Bartholomew, 1987; Takane and de Leeuw, 1987; Haertel,
1990).

The Unified Model approach blends psychometric and cognitive science viewpoints. 1t is
based upon a new item response model, called the Unified Model. Below we will give a brief

review of the Unified Model.

Following Tatsuoka (Tatsuoka, K.K., 1984, 1985, 1990; Tatsuoka, K.K. and Tatsuoka, M.M.,
1987), we consider a test of length I with K postulated cognitive attributes, and a matrix
Q = (qri)rxs. where

1 if item ¢ requires attribute &
qki =
0 if not
The KA attributes include those of interest for cognitive diagnosis. as well as others inadvertently
present in the test. The Q matrix specifies which attributes must be mastered in order to
correctly answer each item.

The Q matrix represents a presumed choice of strategy for each item. By strategy we mean
the steps that are used in answering the item.

Let a = (ay,....ar)? be a vector denoting an examinee’s attribute state, where 21 denotes

the transpose of vector x, and

| if examinee has mastered attribute

0 if not

) =

A given examinee attribute state @ = (aj.....ax)’. along with the Q matrix produces the idreal

response pattcrn associated with o and determined by Q:

rqola) = (z1xy)T (1)

It is defined as follows: for the idea’ response, itewn 7 is answered correctly if the examinee pos-
sesses all the attributes as required by Q for this item: otherwise. item ¢ is answered incorrectly.

[n mathematical terms,

0 if there is an attribute & for which g4, =1 but az =0
I =

—
[
—

I if not

t)




In reality, examinee responses are seldom consistent with such a simple deterministic model.
We expect examinee responses to differ from the ideal response patterns. The Unified Model
approach models the probabilistic variation in examinee responses by incorporating the following

four major sources of response variation.

Strategy: The examinee mav use a different strategy from that presumed by the

Q matrix.

Completeness:  An item may require attributes that are not listed in the Q matrix. If

so, we will say the Q matrix is incomplete for the it m.

Positivity: In some cases. an examinee who possesses an at{ribute will fail to
apply it correctly to an item, and another examinee who lacks the
attribute will apply it correctly to the item. If such response
behavior is prevalent among the examinces, we will say the attribute

is low positive for the item.

Slips: The examinee may commit a random error.

To allow for cases in which multiple strategies are used by examinees and cases in which the Q
malrix is incomplete. the notion of a latent residual ability 1 is inc duced in the Unified Model.
Hence under the Unified Model, the complete latent ability for an examince is § = (5.a27)! =

)T

n.aq.....,an)t, where o 1s the examinee's attribute state and 7 is his residual ability.
( ] 1 Iy ) a0 / A

Under the Unified Model. the probability of an examinee answering item ¢ correctly (denoted

Y; = 1) given that he has ability (5.a7)7 is

Pi(n.gi 3,) = P(Yi = ln.ai 3,) = (1 = p)diSei Db, (0 + 2¢5) + (1 = di) P, ()] (3)

—t
where
p = probability of a random slip
d; = probability of selecting Q strategy for item ¢

¢; = completeness index of Q matrix for item 7

ERIC "
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K
Sei = H(ﬂki)q"‘a*‘(rki)q*“(l_“k) = P(applving required attributes correctly to i|a)
k=1
7k = P(applying attribute & correctly to i|a; = 1)
ri; = P(applying attribute k correctly to i|ay = 0)
1

Py (1

(n) = AR o) = 1 parameter logistic (1PL) with difficulty b;

g ) T .
di = (1),’,(‘.,',(1,',7'('1,',...7T;\'i,71,‘,...,7‘1\',') \ 1= 1,...,[

The four sources of response variation are incorporated in {he Unified Model through the
parameters p, ¢;'s, d;'s, the 7’s and the r’s, for example, the 7’s and 7’s 2~ used to model the
positivity of the attributes. For a derivation of the model, the reader is directed to DiBello.

Stout, and Roussos (1993).

From now on, we assume p = 0 (no slip) for all items. Thus the probability of answering item

! correctly given examinee ability (1,a”)? becomes

Pi(n.a:3.) = diSa.i Po,(n + 2¢;) + (1 = di) Py, (n) (1)

2.2 Ideal response patterns

A given examinee atiribute state a, along with the Q matrix produces the ideal responsce
pattern associated with a as defined by (1) and (2). Since we postulate /v attributes. there are
2 different attribute states. The number of different ideal response patterns. however, is usually
smaller than 2/ because of the fact that different attribute states may produce exactly the same
ideal response patter..

FErample 1: For the Q matrix given below.

1001001 1 00]
1 010010001
Q=01 10010010
01 10100100
01011 000T1°0

J

both attribute states (1.0.1.1.0)7 and (1.0,0,1.0)7 produce the same idecal response pattern

(0,0.0.0,0,0,1.1,0,0)7.

<t




Definition 1: For two attribute states a, = (ay1,....aix )T and a, = (g, ....aax)7, @, is a
substate of @, and is denoted by a; < o, il oy < ay for k=1,..., KA.

In example 1, attribute state (1,0,0,1.0)7 is a substate of attribute state (1.0,1,1,0).

Definition 2: Among all the attribute states that produce the same ideal respouse pattern,
the canonical state is the one that has the smallest number of 1's.

In example 1, (1,0,0,1,0)7 is the canonical state that produces the ideal response pattern
(0,0,0,0,0,0.1.1,0,0)7.

It can be shown that the canonical state as given by the above definition is unique.

Definition 3: An attribute state o = (@q.....ax)T is a direct sum of two attribute states

7

a; = (ape o) and ay = (ag. ..., agx )7, denoted by a = o, V a,. if

ap = o V ag = mar(og.agr). for k=1.....A

Whether an attribute state is a canonical state can be determined by the following proposition.

Proposition I: An atiribute state is a canonical state, if
e it is the attribute state of all 1's or the attribute state of ail 0's.
e it is a column of the Q matrix. or

e it has substates that are columns of the Q matrix and it is the direct sum of these substates.

Erample 2: For the @ matrix given below.

1 1100

00110
Q:

000 1 1

(000 01

attribute state (0.1, 1. 1)7 is a canonical state. hecause it has substates (0.1.1.0)7 and (0,0, 1. 1)

that are columns of Q. and the direct sum of these two substates is (0.1,1,1)7.

As results of the above proposition. we have the following corollaries concerning the nuniber

of canonical states.




Corollary I: If among the A" attributes postulated, only A’ are required by all the items,
there will be at most 28" canonical states.
In this case, there are ' — K’ attributes not required by any item; in other words, they are

redundant. Below we assume this situation never happens.

Corollary 2: Consider all the items each requiring a single attribute. if the number of different

attributes required by these items is K. there will be at least 28" canonical states.

The canonical states can now be used as representatives of attribute classes. so we can index
the set of all ideal response patterns, or the set of attribute classes by { = 1..... L. and replace

attribute state @ by index [ in our notation heretofore. The latent space can now be thought of

as {(n.OYF :pe R I=1....,L}.

For the distribution of latent ability (.0)T. we assume in our model a finite mixture of
normals with the mixing probability p; and N (py.0?) for given L. i.c.. the density of latent ability

distribution

(n — m)?
-]

1
7(0:9) = w(n.l:0) = pi- crp 5

2ro 20
where the latent ability distribution parameters

2y7
O = {Preweee PLefl1e e L1 07)

2.3 Log likelihood function

Suppose there are a total of N examinees. Let B = (3,......3)) be the totality of item
parameters, and assume the latent space is complete with respect to the latent ability vector ¢
so that the local independence given @ holds

I I
P(Y,10:B) = T P(Yailg: 3,) = TT P8 2)" (1 = 2(0: 3.))' 7
1=1 t=1
where Y, 1s the response vector for examinee n.

The marginal likclihood function. which is the likelihood function given the response matrix

Y and the matrix of latent abilities @ integrated over the latent ability distribution. is given by

N
L(B.oY) = /L(B,le,@)l"(d@) =] /1)()_',,|Q;B)n(o;o)(1g

n=1

i ()
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Here we have used the independence of examinees to factor the likelihood function L(B.o|Y.®)
and to factor F(d®) into a product measure.

Taking the logarithin and using (5). the log likelihood function given Y is

1 | o (n — )
nL(B,olY) = Zan/P 2l B)p[\/_ erpl— ¥ Jdn (6)

n=1 I=1
2.4 Some model identifiability and estimability issues

There are various identifiability and estimability problems involving the parameters of the
Unified Model. First we give two definitions. which deal with two different causes for being

unable to estimate model parameters.

Definition 4: If a probability model p(y|o) is parametrized by a vector o. we say the model

parameter o is not identifiable if there exists a ¢’ # ¢ such that for all y

i.c.. the distribution of y is the same for é and ¢'. In this case. the data simply cannot vield auy
. . . . . ! ~ . . . R
information to distinguish o from ¢'. Further, if 1 constraints (e.g.. fixing m components of o)

render the n-dimensional o identifiable, we say that n — m of the components are identifiable.

Definition 5: 1f a model p(y|¢) is parametrized by a vector 0 = (01.....0n)7. we say a
component & of the model parameter ¢ is not estimable if the model does not actually involve

the component. In this case, the data simply cannot yvield any information about oy.

First. let us consider an identifiability problem that arises involving the #'s and r's.

IN
Proposition 2: Yor item ¢, let K; = Zq;\.,. the number of attributes required by /. Then
k=1
among the 24, of 7's and »'s for which ¢ = 1. only A, 4+ I of them are identifiable.

This identifiability problen is caused by the nonlincar constraints among the S, s resulting
frotn their being products of the 7's and r's. For illustrative purposes. suppose there are just
two attributes and item 1 requires both. Recall (3) and consider its S's. Then we have four
s and r's (7. w211 r2 ) to be estimated. or equivalently four S's to be estimated (57, =

i1 Sop = TP Sy = w1y, and Sy = ryprap. llere the first index of the S7s denotes the




attribute states (1, )T, (1,0)7, (0, )T, and (0,0)7, respectively). Since S; = S21531/51, only
three S's are identifiable, or equivalently only three of the four #'s and r’s are identifiable.

To resolve the above identifiability problem involving the 7's and r’s, if an item ¢ requires K;
attributes, we will fix the first K; — 1 #’s at 1, leaving only the last 7 {ree. so that itemn 7 now

has ouly K; 4 1 free 7 and r parameters.

Next, let us look at the identifiability issue involving the b; and yy. recalling (3) aud (5).

Proposition 3: If holding all other parameters fixed. and adding the same constant to every
b; and every py, the log likelihood function hu L(B.o]Y) will not change. Note that this is of
course the usual identifiability problem occurring with ordinary IRT logistic modeling.

Proofs of the above results can be found in Jiang (1996). There are other identifiability and
estimability problems: below we give some examples. If d; = 1 (i.c.. we are certain the Q strategy

for item 7 will be selected by all examinees). the Unified Model for the ith item becomes

Since .

we cainot estimate b; and ¢; separately when &; = 1. In the sense of Definition -, b, and ¢; are
unidentifiable when d, = 1. because different sets of (b;.¢;) with the same value at b; — 2¢; will
give the same (. a: 3.}, Similarly. we can argue that if d; is close to 1. we will not have enough
information from the data to accurately estimate b, and ¢, separatc's, but rather can estunate
them together through the linear combination b; — 2¢;.

If d, = U, then

Pin.a:3) = B, (n)

In this case. we cannot estimate S,, for any possible a. nor can we estimate ¢ (i.e.. S, and ¢,
are not estimable in the sense of Definition ).

Since d; is the probability of selecting Q strategy for itemn ¢ we can normally assume d;

is bounded away from 0. unless the Q matrix under consideration is badly constructed from

cognitive perspective.

9
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3 Estimating the Structural Pirameters of the Unified
Model

Since directly maximizing In L(B.'Y) over B and o is infeasible. we use the EM algorithm.

3.1 EM aigorithm for the Unified Model

The EM algorithm. as its name suggests. is divided into two steps: the I (expectaty.  step.
and the M (maximization) step. Cyclical application of the E step and the M step continues till
a certain convergence criterion is met.

In the E step. the conditional expectation of log likeliliood of complete data given the incom-
plete data and current parameter estimates is computed. In our study. the incomplete data is
the observed response matrix Y and the complete data is the responses plus the examinee latent

ability matrix ®. So in the E step. the following quantity is computed

Q(B.o:B'.0') = E[ln L(B.o|Y.®)|Y:B".¢]

where the expectation is taken with respect to ©. Here B’ and o are the parameter estimates
resulted from the M step in the previous iteration. Ilere and below we follow the standard
notation in the literature of EM algorithm. It is understood that the @ functions in the I and
M steps depend on the observed response matrix Y.

It turns out that for the Unified Model the following decomposition holds

1
Q(B.o:B.o') = Qu(a:B'.0') + ) Qu(I:B.¢)

=1
where Qy(o: B'.g') involves only the ability distribution parameter ¢ and cach Q,(j':B'.(._‘/i
involves only the item structure parameter 3 for item 1.
In the M step, Q(B. 0: B’. ¢) is maximized over the parameters B and o for given 12, o’ and
Y. Because of the decomposition in the I step, we can separately maximize Qo(o: B’ (_‘)') over ¢
and cach Q,-(i:B'.Q') over J .
While there exists a closed-form solution Q for maximizing Qu(o B'.g_j’) over o, no closed-

form solution exists for maximizing (,(.3 : B, o'} over 3. Because of the difficnlties in computing

10
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the derivatives, especially the second derivative (Hessian) matrix, and the possibility of many
local maxima, the conventional Newton-Raphson method is not feasible to apply. So instead of
using Newton-Raphson. we use Evolution Programming (Michalewicz, 1994) to maximize cach
Qi(3:B'.0') over 3.

Auy optimization task can be thought of as a search through a space of potential solutions.
Ivolution Programming is a stochastic algorithm whose search method emulates the natural
phenomena of genetic inheritance and Darwinian strife for survival. An Evolution Programming
maintains a population of individuals P(1) = {z}{.....2L} for use in iteration t. Ilach individual
is a vector and represents a potential solution to the problem at hand (i.e.. a potential optimizer
of the problem). Each solution x! is evaluated to give some measure of = fitness™. Then, as a
result of iteration 1 a new population P(f 4+ 1) for use in iteration f + 1 is formed by selecting the
more “{it” individuals (the select step). Some members of this new population undergo trans-
formations (alter step) by means of “genetic” operators to form new potential solutions. There
arc unary transformations (mutation type). which create new individuals by a small change in a
single individual, and higher order transformations (crossover typej. which ereate new individu-
als by combining segments from several (two or more) individuals. After several generations the
prograin converges with the goal being that the best individual in this final generation represents
a neer-opiimum solution.

For our problems at hand, since we are maximizing cach Q, (.4 : B o) over 4 . the population
of individuals are vectors of possible values for 3. One iteration consisis of operations such
as mutation, crossover, and sclection. Evolution continues through generations until a certain
convergenee accuracy s obtained. Then the maximizer E! of (i3 B’ o) is given by the best

solttion vector of the final generation,

4 Simulation Study and Results

We use a carefully constructed Q matrix with 5 postulated attributes, and an examinee pop-
ulation having a selected subset of all 32 possible attribute states to demonstrate the effectiveness
of our estimation procedure.

We postulate 10 “core™ ems. The Q matrix and the item parameter settings are given
I

4
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in Table 1. The rationale of choosing the item parameter setting as given in Table 1 is that
the completeness index ¢, of the Q matrix is moderate to high. That is. it is relatively a
single strategy test (i.e.. d;’s are close to | so that we are fairly sure an examinee will choose
the single strategy postulated by the Q matrix), and the positivity is high so that the #'s are
close to 1 while the r's are small. With a set of well defined attributes and reasonably well
constructed Q matrix. our choire of the itein parameter setting is quite plausible. The simulated
test consists of 10 items obtained by replicating each core item < times. For the Q matrix
postulated, there are a total of 24 possible attribute classes (i.e.. there are only 24 different ideal
response patterns resulting in 24 attribute classes from the 32 attribute states). 1000 examinees
are generated by assuming that only 10 of the 21 attribute classes actually occur in the examinee
population. Table 2 gives the latent ability distribution parameter settings for the 10 classes,
along with their representative canonical states and their ideal response patterns. In Table 2 and
subsequient tables, the column lable IR refers to ideal respouse pattern number. Note that while
our choice of the y; is somewhat arbitrary. the y; ordering is consistent with the partial ordering
existing among the attribute states. Because the empirical work needed to find “realistic™ model
paramcter values (B, o) has not been done. we have been forced to select what seemn to be
planusible values for the model parameters.

Recall that the Unified Model for the ith item is given by (1), The estimated item and latent
ability distribution parameters as a result of our FN algorithm run are given in Tables 3 aund 1.

respectively.




Table 1. Q matrix and true item parameters

item attr. 1| attr. 2 | attr. 3 § attr. . | attr. 3 b, 8 d,
i : 8? gj ~0.3497 | 0.90 { 0.90
2 : 8? (1)2 8? ~0.1929 | 0.70 | 0.95
3 ’; (1)? 8; 82 ~0.0082 | 0.90 | 0.65
1 ; (1)8 (1)? 0.0189 | 0.60 | 0.95
5T ég 82 ~0.1832 | 0.90 | 0.95
6 : 8? (1)2 0.9313 10701 0.95
7 T 83 ~0.3339 | 0.10 | 0.85
8 ; 8’; 88 —0.1006 | 0.90 | 0.95
9 : (1)3 (1)2 1.0964 | 0.90 | 0.95
10 : g’j 0.2996 | 0.60 | 0.95

Table 2. True latent ability distribution parameters

attribute ideal true  {rue
IR state response M u
7 00111 01001 00010 0.09 —0.057
0 01101 00000 10011 0.11  -0.760
2 OL111 glr10l 10011 0.08  0.133
11 10011 00011 01100 0.11  -0.392
3 10111 01611 01110 0.09  0.551
24 11000 10000 01001  0.11  -0.727
1 11011 10011 01101 0.10 -0.964
5) 11101 10010 11011 0.10  0.584
6 11110 10100 11101 0.11  0.448
l 1111 LTI el 010 0.562
a 1.00




Table 3. Estimated item parameters

item attr. 1 | attr. 2 | attr. 3 | attr. 4 | attr. 5 b; e d;
T 1.00 0.72
—0.53. 8 97
Pl oar | oo 0533 | 080 | 0.97
A - 100 | 1.00 | 0.7 _
2 . 0.43 098 0.05 0.219 | 0.90 | 0.93
T 1.00 | 1.00 | 0.69 ~ .
S 0.05 | 0.49 | 0.07 —0.009 1 0.70 1 0.65
T 1.00 1.00 ) .
4 - 0.00 0.38 0.102 | 0.60 | 0.94
- | 7 .00 | 0.90 o -
3 - 0.22 0.26 —0.272 1 0.90 | 0.97
T 1.00 0.83 .
) 165 R 85
6 - 0.07 0.20 1.165 | 0.80 | 0.85
i R —0.477 | 0.50 | 0.66
r 0.17
) 7 1.00 0.70
8 —0. . 98
; . 0.50 0.00 0.390 1 0.90 | 0.9
7 1.00 0.97
0 —0 z
- 0.33 0.97 0.090 1 0.30 | 0.95
T 0.8 —— o
10 . 0.39 0.770 | 0.80 | 0.8>
Table 1. True and estimated ability distribution parameters
attribute ideal true  est. true est.
IR state response m i 1] ]
7 00111 01001 00010 0.09 0.0631 -0.057 0.1933
9 01101 00000 10011 0.11 0.0975 =0.760 =0.6773
2 01111 01101 10011 0.08 0.1037  0.133 =0.0190
11 10011 00011 C1100 O.I1 0.1170 ~-0.392 —-0.1286
3 10111 01011 01110 0.09 0.1033  0.551 0.5177
21 11000 10000 01001 0O.11 0.1175  =0.727 —0.5631
-4 11011 10011 01101 0.10 0.0930 -0.961 —0.7296
B} 11101 10010 11011 0.10 00837  0.584 0.5579
0 11110 10100 11101 0.11  0.1001 0448 0.9197
1 11111 1ty it 0100 0.0940  0.762 (0.89%.1
ost, T 0.931
1

1Y




From Table 4, we notice that the true and estimated mixing probabilities are close, while the
estimated gy values are often not close to the true . Because of the way the y's function in the
likelihood through the latent ability distribution. it is relatively more difficult to estimate them
accurately, especially when the possibility of relatively flat likelihood surface exists. Taking this
into account. we think the estimated y; values are satisfactory (sce also the comment below on
the comparison between the likelihood at the true and estimated parameters). Note that we
start the EM algorithm run with equal mixing probabilitics —IT as initial values for all the 24
possible attribute classes. From Table 4, we see that our procedure selects the right 10 classes.
the estimated mixing probabilities for the other 14 are all approximately 0 (with an average of
0.0019). as desired. Hence their estimated values are not given.

Because of Proposition 2, different sets of 7's and r’s can generate the same set of S, ,.'s. Inour
estimation procedure, remember that for an item ¢ that requires K; attributes we {arbitrarily)
fix the first &, — I of the n's at 1 to reduce the indeterminacy among the #'s and r's. As a
result, the parameter estimates for sonic items may appear to be far away from their true values.
Because of this problem. to determine the estimation accuracy of item parameters, we need to
instead compare the estiniated S, ,'s with their true values using the estimated and true values
of #'s and r’s. From Table 3 it is clear that for items -1 5. 7. 9. and 10 the estimates of 7's and
r's are close to their true values. Consequently for these items the estimated Sq,'s will be close
to the true values. Because the estimates of 7's and r's are far off the true values {or items 1. 2.
3. 6. and 3. Tables 5 and 6 show the comparisons of the estimated S, ;'s and their true values for
these items, Table 5 compares the true values for S, ;'s with their estimates for items 1. 6, and
8. while Table 6 compares the true S,, with their estimates for items 2 and 3. From Tables 5
and 6. we see that the estimated values of S, ;"s arc close to their true values for all the possible
attribute states for these items (the average absolute deviation between the true and estimated
S, 15 0.0186 for Table 5 and 0.0295 for Table 6), even though the individual 7 and r estimates
are not close to the true values. Note that in Tables 5 and 6. when denoting tlie attribute states,
we list only the attributes required by the item. For example, in Table 5 attribute state 10 is
really (1.0 %+ #)7 for item 1. while it is (« [.0.%.%)" for item 6, where % denotes it can be

cither 1 or 0.
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close to their true values. But remember when d; is close to 1, we cannot expect to accurately
estimate b; and ¢; separately because the data contains little information about these parameters
(i.e., the likelihood surface is rather flat). That is, we are close to a condition of unidentifiability
of the b; and ¢;. For those items with d; close to 1, as discussed earlicr a comparison between

the true and estimated b; — 2¢; is appropriate. and Table 7 shows thev arc quite close.

Table 5. True and estimated S,,i’s for items 1, 6, 8

item 1 item 6 item 8
attribute | true estimated | true estimated | true estimated
state Sai Sai Sai Sai Sai Soi
11 0.720 0.7200 0.800 0.8300 0.720 0.7000
10 0.360 0.3700 0.160 0.2000 0.000 0.0000
01 0.080 0.1224 0.100 0.0581 0.360 0.3500
00 0.040 0.0629 0.020 0.0140 0.000 0.0000

Table 6. True and estimated S, ;'s for items 2 and 3

item 2 item 3
attribute  true estimated | attribute true estimated

state Sei Sai pattern Saii Sai

111 0.720 0.7400 111 0.640  0.6900
110 0.080 0.0500 110 0.160 0.0700
101 0.216  0.2072 101 0.240  0.3381
011 0.360 0.3182 011 0.064 0.0345
100 0.024 0.0140 100 0.060 0.0343
010 0.040  0.0215 010 0.016 0.0035
001 0.108  0.0891 0c1 0.024 0.0169
000 0.012  0.0060 000 0.006 0.0017
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By examining Tables | and 3, we see that the parameter estimates of b;, ¢i. and d; are not




Table 7. C'ocmiparison of true and estimated item parameters

item | trued; | est. b; | truec, | est. ¢; | true d; | esu. d; | true by — 2¢; | est. by — 2¢,
1 -0.3497 | =0.533 | 0.90 0.80 0.50 0.97 —2.1497 —2.133 B
2 -0.1929 | 0.219 0.70 0.90 0.95 0.93 -1.5929 —1.581
1 0.0189 0.102 0.60 0.60 0.95 0.94 —1.1811 —1.098
5 -0.1832 | —-0.272 | 0.90 0.90 0.95 0.97 —1.9832 -2.072
6 0.9343 1.165 0.70 0.80 0.95 0.85 —0.1657 —0..135
8 —0.1006 | —0.390 | 0.90 0.90 0.95 0.98 - 1.9006 -2.190
9 1.0964 | —0.090 | 0.90 0.30 0.95 0.95 —0.7036 —-0.690
10 0.2996 0.770 0.60 0.80 0.95 0.85 -0 9004 —0.830

Remember the ultimate goal of our estimating the model parameters is to cnable us to
classify the examinees cognitively. Since we are using the marginal maximum likelihood approach
to estimate the model parameters (the calibration step, preliminary to the classification step).
another way (the right way) to look at the estimation accuracy of our model calibration procedure
is to compare the log likelihood values given at the true and estimated parameters. Because of
the possibility of a relatively flat likelihood surface in certain locations of the model parameter
space, different parameter sets might give approximately the same likelihood. However, if we
use the estimated likelihood as input to an examinee cognitive classification procedure, it is the
likelihood value rather than the estimated parameter values that is centrals thus non-influential
differences in estimated parameter values are irrefevant.

For the model we are considering, Figure 1 gives the plot of values of the log likelihood {rom
cach of the EM eyeles of a particular run using our estimation program. The horizontal line in
the figure corresponds to the true log likelihood, which is —20638.66. From Figure 1, we can
see tite log likelihood values for the first several FEM cyeles are rapidly approaching the true log
likelihood. After 13 or so cycles the log likelihood value is already quite stable. Tor the last 15 or
so cycles the log likelihood values ave increasing very slowly. The estimated log likelihood from
the final EM cycle is -20629.32, larger than but close to the true log likelihood (the reason why
the estimated log likelihood is larger than the true log likelihood for this particular run might
he due to the combination effect of estimation error and the randomness we have introduced in

generating the data).
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Figure 2. Plot ol 1the Log Likelihood Values from the EM Cycles
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5 Summary

The imiportant need for test analysis methods that extract cognitive information useful to
the practitioners from ordinary tests is widely recognized and is a topic of vigorous research
in psychometrics and cognitive psychology. Such methods and underlying theory should be
applicable to tests that are in common use today, as well as in the future to specially constructed
diagnostic instruments based upon cognitive theory. in many cases computer administered. The
goal of developing the Unified Model was to be able to determine. on the basis of a simple test.
what the cognitive strengths and weaknesses of an examinee are, relative to a list of cognitive
attributes of interest in the particular educational setting of the test.

The Unified Model is theoretically appealing relative to other cognitive diagnostic models.
but because of its structural complexity, there is not yet estimation package available. In this
paper. we have proposed an estimation procedure for the Unified Model and have shown that
it is not only computationally feasible but effective. With an effective estimation procedure for

the Unified Model, we can calibrate the model. and thus classify and estimate examinee latent
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ahilitics, thereby extracting useful cognitive information about the test as well as the examinees,
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